direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C22×C22≀C2, C26⋊2C2, C24⋊16D4, C23⋊1C24, C25⋊10C22, C24⋊11C23, C22.20C25, (C2×C4)⋊1C24, (D4×C23)⋊9C2, C23⋊10(C2×D4), C2.4(D4×C23), (C2×D4)⋊13C23, C22⋊3(C22×D4), C22⋊C4⋊14C23, (C23×C4)⋊27C22, (C22×C4)⋊11C23, (C22×D4)⋊56C22, (C2×C22⋊C4)⋊80C22, (C22×C22⋊C4)⋊26C2, SmallGroup(128,2163)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 4076 in 2272 conjugacy classes, 556 normal (6 characteristic)
C1, C2 [×15], C2 [×28], C4 [×12], C22, C22 [×58], C22 [×332], C2×C4 [×12], C2×C4 [×36], D4 [×96], C23 [×103], C23 [×700], C22⋊C4 [×48], C22×C4 [×18], C22×C4 [×12], C2×D4 [×48], C2×D4 [×144], C24, C24 [×64], C24 [×308], C2×C22⋊C4 [×36], C22≀C2 [×64], C23×C4 [×3], C22×D4 [×36], C22×D4 [×24], C25, C25 [×15], C25 [×24], C22×C22⋊C4 [×3], C2×C22≀C2 [×24], D4×C23 [×3], C26, C22×C22≀C2
Quotients:
C1, C2 [×31], C22 [×155], D4 [×24], C23 [×155], C2×D4 [×84], C24 [×31], C22≀C2 [×16], C22×D4 [×42], C25, C2×C22≀C2 [×12], D4×C23 [×3], C22×C22≀C2
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, gcg=ce=ec, cf=fc, de=ed, gdg=df=fd, ef=fe, eg=ge, fg=gf >
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26)(27 28)(29 30)(31 32)
(1 10)(2 9)(3 27)(4 28)(5 20)(6 19)(7 12)(8 11)(13 26)(14 25)(15 32)(16 31)(17 30)(18 29)(21 23)(22 24)
(1 11)(2 12)(3 19)(4 20)(5 28)(6 27)(7 9)(8 10)(13 29)(14 30)(15 21)(16 22)(17 25)(18 26)(23 32)(24 31)
(1 2)(3 30)(4 29)(5 26)(6 25)(7 8)(9 10)(11 12)(13 20)(14 19)(15 16)(17 27)(18 28)(21 22)(23 24)(31 32)
(1 31)(2 32)(3 26)(4 25)(5 30)(6 29)(7 21)(8 22)(9 15)(10 16)(11 24)(12 23)(13 27)(14 28)(17 20)(18 19)
(1 8)(2 7)(3 29)(4 30)(5 25)(6 26)(9 12)(10 11)(13 19)(14 20)(15 23)(16 24)(17 28)(18 27)(21 32)(22 31)
(1 6)(2 5)(3 22)(4 21)(7 25)(8 26)(9 20)(10 19)(11 13)(12 14)(15 17)(16 18)(23 28)(24 27)(29 31)(30 32)
G:=sub<Sym(32)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,10)(2,9)(3,27)(4,28)(5,20)(6,19)(7,12)(8,11)(13,26)(14,25)(15,32)(16,31)(17,30)(18,29)(21,23)(22,24), (1,11)(2,12)(3,19)(4,20)(5,28)(6,27)(7,9)(8,10)(13,29)(14,30)(15,21)(16,22)(17,25)(18,26)(23,32)(24,31), (1,2)(3,30)(4,29)(5,26)(6,25)(7,8)(9,10)(11,12)(13,20)(14,19)(15,16)(17,27)(18,28)(21,22)(23,24)(31,32), (1,31)(2,32)(3,26)(4,25)(5,30)(6,29)(7,21)(8,22)(9,15)(10,16)(11,24)(12,23)(13,27)(14,28)(17,20)(18,19), (1,8)(2,7)(3,29)(4,30)(5,25)(6,26)(9,12)(10,11)(13,19)(14,20)(15,23)(16,24)(17,28)(18,27)(21,32)(22,31), (1,6)(2,5)(3,22)(4,21)(7,25)(8,26)(9,20)(10,19)(11,13)(12,14)(15,17)(16,18)(23,28)(24,27)(29,31)(30,32)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,10)(2,9)(3,27)(4,28)(5,20)(6,19)(7,12)(8,11)(13,26)(14,25)(15,32)(16,31)(17,30)(18,29)(21,23)(22,24), (1,11)(2,12)(3,19)(4,20)(5,28)(6,27)(7,9)(8,10)(13,29)(14,30)(15,21)(16,22)(17,25)(18,26)(23,32)(24,31), (1,2)(3,30)(4,29)(5,26)(6,25)(7,8)(9,10)(11,12)(13,20)(14,19)(15,16)(17,27)(18,28)(21,22)(23,24)(31,32), (1,31)(2,32)(3,26)(4,25)(5,30)(6,29)(7,21)(8,22)(9,15)(10,16)(11,24)(12,23)(13,27)(14,28)(17,20)(18,19), (1,8)(2,7)(3,29)(4,30)(5,25)(6,26)(9,12)(10,11)(13,19)(14,20)(15,23)(16,24)(17,28)(18,27)(21,32)(22,31), (1,6)(2,5)(3,22)(4,21)(7,25)(8,26)(9,20)(10,19)(11,13)(12,14)(15,17)(16,18)(23,28)(24,27)(29,31)(30,32) );
G=PermutationGroup([(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26),(27,28),(29,30),(31,32)], [(1,10),(2,9),(3,27),(4,28),(5,20),(6,19),(7,12),(8,11),(13,26),(14,25),(15,32),(16,31),(17,30),(18,29),(21,23),(22,24)], [(1,11),(2,12),(3,19),(4,20),(5,28),(6,27),(7,9),(8,10),(13,29),(14,30),(15,21),(16,22),(17,25),(18,26),(23,32),(24,31)], [(1,2),(3,30),(4,29),(5,26),(6,25),(7,8),(9,10),(11,12),(13,20),(14,19),(15,16),(17,27),(18,28),(21,22),(23,24),(31,32)], [(1,31),(2,32),(3,26),(4,25),(5,30),(6,29),(7,21),(8,22),(9,15),(10,16),(11,24),(12,23),(13,27),(14,28),(17,20),(18,19)], [(1,8),(2,7),(3,29),(4,30),(5,25),(6,26),(9,12),(10,11),(13,19),(14,20),(15,23),(16,24),(17,28),(18,27),(21,32),(22,31)], [(1,6),(2,5),(3,22),(4,21),(7,25),(8,26),(9,20),(10,19),(11,13),(12,14),(15,17),(16,18),(23,28),(24,27),(29,31),(30,32)])
Matrix representation ►G ⊆ GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | -1 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -2 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,-2,1] >;
56 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2AM | 2AN | 2AO | 2AP | 2AQ | 4A | ··· | 4L |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 |
type | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | D4 |
kernel | C22×C22≀C2 | C22×C22⋊C4 | C2×C22≀C2 | D4×C23 | C26 | C24 |
# reps | 1 | 3 | 24 | 3 | 1 | 24 |
In GAP, Magma, Sage, TeX
C_2^2\times C_2^2\wr C_2
% in TeX
G:=Group("C2^2xC2^2wrC2");
// GroupNames label
G:=SmallGroup(128,2163);
// by ID
G=gap.SmallGroup(128,2163);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*c*g=c*e=e*c,c*f=f*c,d*e=e*d,g*d*g=d*f=f*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations